PFe(CO)₄, 51743-95-4; (CH₃O)₃PFe(CO)₄, 51743-96-5; (C₆H₅)-(CH₃)₂PFe(CO)₄, 51743-97-6; (*n*-C₄H₉)₃PFe(CO)₄, 18474-82-3; $(C_4 H_5 O)_3 PFe(CO)_4$, 51653-00-0; $(CH_2 = CHCOCI)Fe(CO)_4$, 51743-98-7; (CH₂=CHCOOH)Fe(CO)₄, 51743-99-8; (CH₂=CHCONC₅H₁₀)- Fe(CO)₄, 51744-00-4; (CH₂=CHCN)Fe(CO)₄, 51744-01-5; [(n- $C_4H_9)_3P]_2Fe(CO)_3$, 51653-01-1; $[(CH_3O)_3P]_2Fe(CO)_3$, 19457-84-2; $[(C_6H_5O)_3P]_2Fe(CO)_3, 20516-74-9; [C_6H_5(OC_2H_5)C](C_6H_5)_3PFe$ (CO)₃, 42947-52-4.

> Contribution from the Institute of Physical and Chemical Research, Wako-shi, Saitama, Japan

Studies on Interactions of Isocyanides with Transition Metal Complexes. X.¹ Preparation and Reactions of Alkyliron Complexes Containing Isocyanide²

YASUHIRO YAMAMOTO* and HIROSHI YAMAZAKI

Received December 26, 1973

Reactions of π -C₅H₅Fe(CO)(CNR')X (R' = C₆H₁₁, (CH₃)₃C, PhCH₂; X = Cl, I) with *p*-YC₆H₄MgCl (Y = H, Cl) give the corresponding benzyl derivative π -C₅H₅Fe(CO)(CNR')CH₂C₆H₄Y-p whereas reactions with other Grignard reagents (e.g., $CH_3MgI, i C_3H_7MgBr$, PhMgBr) lead to decomposition. When the latter reactions are run in the presence of CO, π -C, H₄- $Fe(CO)(CNR')COR complexes (R = CH_3, i-C_3H_7, Ph, p-ClC_6H_4)$ are obtained. The former reactions under comparable conditions give both benzyl and phenylacetyl derivatives. The mechanism of these reactions is discussed. Reactions of π -C₅H₅Fe(CO)(CNR')R (R = PhCH₂, p-ClC₆H₄CH₂, p-ClC₆H₄; R' = C₆H₁₁, PhCH₂) with CO undergo preferentially an isocyanide insertion to afford the corresponding iminoacyl complexes π -C₅H₅Fe(CO)₂[C(R)=NR']. The mass spectra of the isocyanide complexes and the iminoacyl ones are also investigated.

Introduction

Reactions of carbonyl- π -cyclopentadienylalkylmetal complexes π -C₅H₅M(CO)_nR (M = Fe, n = 2; M = Mo, n = 3) with isocyanides proceed with either carbonyl or isocyanide insertion into the metal-carbon σ bonds.³⁻⁵ In some cases the competitive insertion proceeds to give the corresponding metal-acyl and -iminoacyl complexes. It is of particular interest to know whether CO or R'NC is inserted preferentially in some alkylmetal complexes containing both CO and R'-NC ligands, when reacted with Lewis bases. Reported here in detail is an extensive investigation on the syntheses and the reactions of carbonyl(isocyanide)- π -cyclopentadienylalkyliron complexes.

Experimental Section

General Procedures and Physical Measurements. All reactions were carried out under an atmosphere of nitrogen. Melting points were taken on a Yanagimoto Model MP-S2 and a Mitamura capillary melting point apparatus and are uncorrected. Infrared spectra were recorded on a Perkin-Elmer 521 spectrophotometer or on a Shimazu IR-27G spectrophotometer. Proton magnetic resonance spectra were obtained on JEOL C-60, JEOL C-50HL, and Varian HA-100B spectrometers, using tetramethylsilane as a reference. The mass spectra were measured on a Nippondenshi Type JPS-1S mass spectrometer with a direct-inlet system. The photochemical reactions were carried out with a Usio-Denki 450-W high-pressure mercury lamp (Type UV-453).

Materials. Isocyanides⁶ were prepared by procedures described in the literature. π -C₅H₅Fe(CO)₂X (X = Cl, ⁷ I⁸) were prepared according to published methods.

Preparation of Bis[carbonyl(tert-butyl isocyanide)-π-cyclopenta-

(1) Part IX: Y. Yamamoto and H. Yamazaki, Inorg. Chem., 13, 438 (1974).

(2) A part of this paper was presented at the 26th Annual Meeting of the Chemical Society of Japan, Kanagawa, Japan, April, 1972; see Preprints III, p 1041.

(3) Y. Yamamoto and H. Yamazaki, Bull. Chem. Soc. Jap., 43, 143 (1970).

- (4) Y. Yamamoto and H. Yamazaki, Inorg. Chem., 11, 211 (1972). (5) Y. Yamamoto and H. Yamazaki, J. Organometal. Chem., 24,
- 717 (1970). (6) I. Ugi and R. Meyer, Chem. Ber., 93, 239 (1960).
- (7) T. S. Piper, F. A. Cotton, and G. Wilkinson, J. Inorg. Nucl. Chem., 1, 165 (1955).
- (8) T. S. Piper and G. Wilkinson, J. Inorg. Nucl. Chem., 2, 38 (1956).

dienyliron]. A mixture of $[\pi$ -C₅H₅Fe(CO)₂]₂ (2.0 g, 5.7 mmol) and tert-butyl isocyanide (1.0 g, 12.0 mmol) in THF (30 ml) was irradiated at 25°. After 24 hr, the solvent was removed under reduced pressure, and then the residue was chromatographed on alumina. Two bands (dark brown and dark green) were observed. The first band (benzene) afforded a trace of $(\pi - C_5 H_5)_2 Fe_2(CO)_3 [CNC(CH_3)_3]$. The work-up of the second band [benzene- CH_2Cl_2 (1:1)] gave dark green crystals (1.7 g, 67%) of $[\pi - C_5 H_5 Fe(CO) \{CNC(CH_3)_3\}]_2$, recrystallized from benzene-hexane. Anal. Calcd for $C_{11}H_{14}$ NOFe: C, 56.93; H, 6.08; N, 6.03. Found: C, 56.97; H, 5.92; N, 6.17.

The compound is very stable in the solid state but decomposes in solution, especially in $CHCl_3$. The infrared spectrum (KBr) shows three strong peaks at 2055 and 2093 cm⁻¹ assignable to the coordinated isocyanide groups and 1732 cm⁻¹ due to the bridged carbonyl groups. This suggests that the complex has a cis structure in the solid state. The proton nmr spectrum in CS₂ consists of two singlets at τ 8.27 (CH₃) and 5.73 (C₅H₅).

This nmr behavior could be explained by having a facile, rapid cis \gtrsim trans isomerization as well as by related compounds, e.g., [π - $C_5H_5Fe(CO)_2]_2^{10,11}$ and $(\pi-C_5H_5)_2Fe_2(CO)_3[CNC(CH_3)_3]_1^{11}$ Study on this subject will be reported in the future.

Preparation of Carbonyl(isocyanide)-π-cyclopentadienyliron Halides. Two representative examples are described below. Analytical data and spectroscopic data are summarized in Table I.

(a) π -C₅H₅Fe(CO)(CNC₆H₁₁)I. A mixture of π -C₅H₅Fe(CO)₂I (3.1 g, 10.4 mmol) and cyclohexyl isocyanide (1.2 g, 11.0 mmol) in benzene (30 ml) was refluxed for 2 hr. The reaction mixture was then chromatographed on alumina, benzene being used as an eluent. Removal of solvent and crystallization of the residue from benzenehexane gave π -C₅H₅Fe(CO)(CNC₆H₁₁)I (3.2 g, 80%) as dark yellow crystals.

The benzyl and tert-butyl isocyanide derivatives were prepared by similar procedures. The chloride complex was prepared at 25°

(b) π -C₅H₅Fe(CO)[CNC(CH₃)₃]I. A solution of iodine (0.7 g, 2.8 mmol) in benzene was added to a solution of $[\pi$ -C₅H₅Fe(CO)- ${CNC(CH_3)_3}_2$ (1.1 g, 2.4 mmol) in benzene (20 ml) at 25° and stirred for 24 hr. By procedures similar to that described in (a), π -C₅H₅Fe(CO)[CNC(CH₃)₃]I (1.1 g, 62%) was obtained.

Reactions of Carbonyl(isocyanide)- π -cyclopentadienyliron Halides with Grignard Reagents. Two representative reactions are described in detail.

(11) R. D. Adams and F. A. Cotton, J. Amer. Chem. Soc., 95, 6589 (1973).

AIC30919Q

⁽⁹⁾ Y. Yamamoto and N. Hagihara, Mem. Inst. Sci. Ind. Res., Osaka Univ., 27, 109 (1970).

^{(10) (}a) E. A. C. Lucken, K. Noak, and D. F. Williams, J. Chem. Soc. A, 148 (1967); (b) O. A. Gansow, A. R. Burke, and W. D. Vernon, J. Amer. Chem. Soc., 94, 2550 (1972).

Table I. Analytical Data, Physical Properties, and Spectroscopic Data of π -C₅H₅Fe(CO)(CNR')X

				Analysis, %							
Compo	1			С	J	H]	N	Ir, ^a c	cm ⁻¹	a. h
R	Х	Mp (dec), °C	Calcd	Found	Calcd	Found	Calcd	Found	$v(N \equiv C)$	<i>v</i> (C≡O)	$\operatorname{Nmr}, \sigma$
C ₆ H ₁₁ C ₆ H ₁₁	Cl I	53-56 79 - 81	53.19 40.55	53.37 40.48	5.49 4.19	5.54 4.21	4.77 3.64	4.61 3.63	2163 2154	1980 1972	7.9-9.0 b ($C_{e}H_{10}$), 5.8-6.3 b ($C_{e}H$), 5.29 s ($C_{e}H_{e}$)
(CH ₃) ₃ C PhCH ₂	I I	139–141 73–77	36.80 42.79	37.33 42.98	3.93 3.08	3.73 3.00	3.90 3.51	3.97 3.61	2153 2173	1970 1968	8.51 s (CH ₃), 5.28 s (C ₅ H ₅) 5.25 s (C ₅ H ₅), 4.99 s (CH ₂), 2.62 s (Ph)

^a Measured as KBr pellets. ^b Measured in CDCl₃.

Table II. Analytical Data and Physical Properties of π -C₅H₅Fe(CO)(CNR')COR

			Analysis, %							
Cor	npd		С		Н		N			
R	R'	Mp (dec), °C	Calcd	Found	Calcd	Found	Calcd	Found		
PhCH ₂	C,H11	53-55	66.86	66.91	6.14	6.30	3.71	3.70		
PhCH ₂	(CH ₃) ₃ C	70-73	64.97	65.21	6.00	6.03	4.02	3.99		
Ph	$(CH_3)_3C$	94.5-96.5	64.12	64.36	5.68	5.85	4.15	4.18		
$p-ClC_6H_4$	C ₆ H ₁₁	94-95	60.40	60.56	5.07	4.87	3.52	3.42		
i-C ₃ H ₇	C ₆ H ₁₁	44-45	62.02	62.00	7.04	6.97	4.25	4.23		
i-C ₃ H ₇	(CH ₃) ₃ C	67.5-69	59.42	59.39	6.97	6.97	4.62	4.59		

Table III. Infrared and Proton Magnetic Resonances of π -C₅H₅Fe(CO)(CNR')COR

Compd			Ir, ^a cm ⁻¹		Nmr , $b \tau$				
	R	R'	ν (N=C)	ν(C≡O)	$\nu(C=O)$	$\overline{C_{s}H_{s}}$	Other protons		
	PhCH ₂	C ₆ H ₁₁	2108	1940	1592	5.43	$8.0-9.0 \text{ b} (C_6H_{10}), 5.93 \text{ s} (CH_2)$		
	PhCH ₂	$(CH_3)_3C$	2110	1942	1580	5.46	$8.58 \text{ s} ((CH_3)_3C), 5.92 \text{ s} (CH_2), 2.82 \text{ bs} (Ph)$		
	Ph	$(CH_3)_3C$	2113	1948	1593	5.24	8.62 s ((CH ₃) ₃ C), 2.27-2.72 b (Ph)		
	p-ClC ₆ H ₄	C ₆ H ₁₁	2125	1945	1584	5.34	7.9-8.9 b ($C_{4}H_{10}$), 6.0-6.5 b ($C_{4}H_{4}$), 2.5-2.9 s ($C_{4}H_{4}$)		
	i-C,H,	$C_{6}H_{11}$	2029	1920	1603	5.35	9.10 d (CH ₃ , 7.2 Hz), 9.12 d (CH ₃ , 7.2 Hz), 9.0-8.0 b		
	• /						$(C_6 H_{10}), 6.88 h (CH, 7.2 Hz), 6.0-6.5 b (C_6 H)$		
	i-C ₃ H ₇	(CH₃)₃C	2035	1923	1576	5.44	9.08 d (CH ₃ , 6 Hz), 9.07 d (CH ₃ , 6 Hz), 8.53 s ((CH ₃) ₃ C),		
							6.92 h (CH, 6 Hz)		

^a Measured as KBr pellets. ^b Measured in CDCl₃ solution. Abbreviations: s, singlet; d, doublet; h, heptet; b, broad; c, complex; bs, apparent broad singlet.

(a) Preparation of π -C₅H₅Fe(CO)(CNC₆H₁₁)CH₂Ph. To a solution of π -C₅H₅Fe(CO)(CNC₆H₁₁)I (2.0 g, 5.3 mmol) in a mixture of benzene (20 ml) and ether (10 ml) was added PhCH, MgCl (30 mmol) in ether (10 ml) at 0°. After stirring for 4 hr, unreacted Grignard reagent was decomposed with water. The reddish orange layer was separated and the aqueous layer was extracted twice with 5-ml portions of benzene. The combined extracts were washed with water and dried over anhydrous magnesium sulfate. The solvent was then evaporated almost to dryness under reduced pressure, and the residue was chromatographed on alumina. Two bands (yellow and dark violet) were observed. The first band was eluted with hexane and the second one with benzene. Eluting with hexane gave a yellow viscous oil of π -C₅H₅Fe(CO)(CNC₆H₁₁)CH₂Ph (0.94 g, 52%). The compound was characterized by the infrared and proton magnetic resonance spectra. Ir (in benzene): 2136 (N=C) and 1938 (C=O) cm⁻¹. Nmr (in CDCl₃): τ 7.42 singlet (CH₂), 5.47 singlet (C₅H₅), 8.1-9.0 broad (C₆H₁₀), 6.1-6.5 broad (C₆H), and 2.3-3.4 (Ph).

Upon work-up of the second eluate a compound was obtained which was identified as known $(\pi - C_5 H_5)_2 Fe_2 (CO)_3 (CNC_6 H_{11})^9$.

 π -C_sH_sFe(CO)(CNR')CH₂C₆H₄Cl-*p* compounds (R' = C₆H₁₁, PhCH₂) (viscous oils) were prepared according to procedures analogous to (a).

 π -C₅H₅Fe(CO)(CNC₆H₁₁)CH₂C₆H₄Cl-p (43%). Ir (in benzene): 2135 (N=C) and 1940 (C=O) cm⁻¹. Nmr (in CDCl₃): τ 7.37 singlet (CH₂), 5.36 singlet (C₅H₅), 8.1-8.9 broad (C₆H₁₀), 6.2-6.5 broad (C₆H), and 2.6-2.8 broad (C₆H₄).

 π -C₅H₅Fe(CO)(CNCH₂Ph)CH₂C₆H₄Cl-p (40%). Ir (in benzene): 2107 (N=C) and 1948 (C=O) cm⁻¹. Nmr (in CDCl₃): τ 7.52 singlet (CH₂), 5.70 singlet (C₅H₅), 5.23 singlet (NCH₂), and 2.3–3.2 broad (C₆H₄).

(b) Attempted Preparation of π -C₅H₅Fe(CO)(CNR')R (R = CH₃, *i*-C₃H₇, Ph). Solutions of π -C₅H₅Fe(CO)(CNR')X (R' = C₆H₁₁, (CH₃)₃C, PhCH₂; X = Cl, 1) in a mixture of benzene (20 ml) and ether (10 ml) were treated with excesses of CH₃MgI, *i*-C₃H₇MgBr, and Ph-MgBr at 0-25°. Decomposition of excess Grignard reagent followed by drying of the organic layer and chromatography on alumina revealed no detectable amount of alkyl- or arylmetal complexes.

Reactions of Carbonyl(isocyanide)-*π*-cyclopentadienyl Halides

with Grignard Reagents in the Presence of Carbon Monoxide. Two representative reactions are described in detail. The analytical data, physical properties, and spectroscopic data of the acyl and aroyl complexes prepared here are summarized in Tables II and III.

(a) Reaction of π -C₅H₅Fe(CO)[CNC(CH₃)₃]I with CH₃MgI in the Presence of CO. To a solution of π -C₅H₅Fe(CO)[CNC(CH₃)₃]I (0.72 g, 2.0 mmol) in a mixture of benzene (20 ml) and ether (10 ml) was added 10 mmol of CH₃MgI in ether (10 ml) at 0° in a stream of carbon monoxide. After 20 min, the reaction mixture was warmed to 25° and then kept stirring for 2 hr. Excess CH₃MgI was then decomposed with water. The dark orange layer was separated and the aqueous layer was extracted twice with 5-ml portions of benzene. The combined extracts were washed with water and dried over MgSO₄. The solvent was evaporated to dryness *in vacuo*, and the residue was chromatographed on alumina. Two bands (dark red and yellow) were observed to develop. Each was eluted with hexane-benzene (1:2) and benzene-CH₂Cl₂ (1:2). Eluting with hexane-benzene gave known { π -C₅H₅Fe(CO)₂]₂. The product from the second eluate was identified as known π -C₅H₅Fe(CO)[CNC(CH₃)₃]COCH₃ (0.3 g, 50%).⁴

(b) Reaction of $\pi \cdot \hat{C}_s \hat{H}_s Fe(CO) [CNC(CH_3)_3] I$ with PhCH₂MgCl in the Presence of Carbon Monoxide. To $\pi \cdot C_s H_s Fe(CO) [CNC(CH_3)_3]$ -I (0.75 g, 2.1 mmol) in a mixture of benzene (20 ml) and ether (10 ml) was added 10 mmol of PhCH₂MgCl in ether (10 ml) at 0° in a stream of carbon monoxide. The reaction mixture was treated as in procedure (a) except that the reaction time was extended to 4 hr. The chromatography on alumina showed three bands. They were eluted with hexane-benzene (10:1), benzene, and benzene-THF (2:1), giving yellow, dark red, and yellow eluates, respectively. The product from the first eluate was identified as known $\pi \cdot C_s H_s Fe(CO)[CN C(CH_3)_3] CH_2 Ph (0.35 g, 40\%).^4$ The product from the second one was identified as known $[\pi \cdot C_s H_s Fe(CO)_2]_2$ (trace). The product from the last one was identified as $\pi \cdot C_s H_s Fe(CO)[CNC(CH_3)_3]$ -COCH, Ph (0.12 g, 17\%).

Reactions of Carbonyl(isocyanide)-*π*-cyclopentadienylalkyliron with Carbon Monoxide. Some representative reactions are described below. Analytical data and characterizations of the iminoacyl complexes are summarized in Tables IV and V.

(a) Reaction of π -C₅H₅Fe(CO)(CNC₆H₁₁)CH₂Ph with CO. A

Table IV. Analytical Data and Physical Properties of Iminoacyl Complexes: π -C₅H₅Fe(CO)₂[C(R)=NR']

			Analysis %								
Compd	Compd		С		Н		N		Cl		
R	R'	Mp (dec), °C	Calcd	Found	Calcd	Found	Calcd	Found	Calcd	Found	
$\frac{PhCH_2}{p-ClC_6H_4CH_2}$ $p-ClC_6H_4CH_2$ $p-ClC_6H_4CH_2$ $p-ClC_6H_4$	$ \begin{array}{c} C_{6}H_{11} \\ C_{6}H_{11} \\ PhCH_{2} \\ C_{6}H_{11} \end{array} $	94-96 114-115 105-107 87-89	66.86 61.26 62.96 60.40	66.97 61.31 62.81 60.45	6.14 5.39 4.32 5.07	5.87 5.21 4.09 5.21	3.71 3.40 3.34 3.52	3.73 3.48 3.30 3.55	8.61 8.57	8.64 8.55	

Table V. Infrared and Proton Magnetic Resonances of Iminoacyl Complexes: π -C₅H₅Fe(CO)₂[C(R)=NR']

Compo	1	Ir, ^a cı	n ⁻¹	Nmr, ^b τ			
R	R'	ν(C≡O)	$\nu(C=N)$	C ₅ H ₅	Other protons		
PhCH ₂	C ₆ H ₁₁	1993, 1932	1609	5.51	7.85-9.0 b (C_6H_{10}) , 6.6-7.1 b (C_6H) , 6.0 s (CH_2) , 2.4-3.0 b (Ph)		
p-ClC ₆ H ₄ CH ₂	C_6H_{11}	2000, 1946	1607	5.42	7.9-8.9 b ($C_{6}H_{10}$), 6.6-7.1 b ($C_{6}H$), 6.02 s (CH_{2}), 2.74 s ($C_{6}H_{2}$)		
p-ClC ₄ H ₄ CH ₂	PhCH ₂	1997,1942	1604	5.38	5.92 s (CH ₂), 5.31 s (N-CH ₂), 2.5-3.0 c (C ₆ H ₄)		
$p-ClC_6H_4$	C ₆ H ₁₁	2007, 1953	1598	5.12	7.8–9.2 b (C_6H_{10}) , 6.5–7.1 b (C_6H) , 2.99 q $(C_6H_4, J_{AB} = 8.4 \text{ Hz})$		

^a Measured as KBr pellets. ^b Measured in $CDCl_3$.

mixture of π -C₅H₅Fe(CO)(CNC₆H₁₁)CH₂Ph (0.50 g, 1.4 mmol) and 30 kg/cm² of CO in tetrahydrofuran (15 ml) in a 200-ml stainless steel autoclave was kept for 144 hr. Removal of the solvent and chromatography of the residue gave two bands. Each was eluted with hexane and benzene, respectively. The product from the hexane solution was known π -C₅H₅Fe(CO)₂CH₂Ph (0.02 g).¹² The product from the benzene solution was identified as π -C₅H₅Fe(CO)₂[C(CH₂-Ph)=NC₆H₁₁] (0.38 g, 77%).

(b) Reaction of π -C₅H₅Fe(CO)(CNC₆H₁₁)C₆H₄Cl- p^{13} with CO. A mixture of π -C₅H₅Fe(CO)(CNC₆H₁₁)C₆H₄Cl-p (0.40 g, 0.11 mmol) and 30 kg/cm² of CO in benzene (15 ml) was kept for 100 hr. Workup of the reaction mixture by the procedures analogous to those described above gave unreacted π -C₅H₅Fe(CO)(CNC₆H₁₁)C₆H₄Cl-p(0.06 g) and π -C₅H₅Fe(CO)₂ [C(C₆H₄Cl-p)=NC₆H₁₁] (0.08 g, 27%).

(c) Attempted Reactions of Carbonyl(tert-butyl isocyanide)- π -cyclopentadienylalkyliron with CO. Solutions of π -C, H_sFe(CO)-[CNC(CH₃)₃] R (R = PhCH₂, ⁴ Ph¹³) and 20-30 kg/cm² of CO in benzene or THF were kept for 140-167 hr at 25°. Evaporation of the solvent revealed (ir spectroscopy) no detectable amount of iminoacyl complexes in the residue of each compound, and resulted in recovery of about 65-85% starting material. Reaction between π -C₅H₅Fe(CO)[CNC(CH₃)₃] CH₂Ph⁴ (0.5 g, 1.50 mmol) and CO in THF (10 ml) was also carried out at 70-75° for 7 hr; again no iminoacyl complex could be detected.

Photochemical Reaction of Dicarbonyl- π -cyclopentadienyl(1-*N*-cyclohexylimino-2-phenylethyl)iron. A solution of π -C_sH_sFe(CO)₂-[C(CH₂Ph)=NC₆H₁₁] (0.65 g, 1.72 mmol) in THF (20 ml) was irradiated at 25° with a 450-W high-pressure mercury lamp. After 21 hr, the reaction mixture was chromatographed on alumina. Three bands (yellow, dark violet, and pale yellow) were observed and eluted with hexane, benzene-hexane (3:1) and benzene-CH₂Cl₂ (1:2), respectively. The product from the first band was identified as π -C_s-H_sFe(CO)(CNC₆H₁₁)CH₂Ph (0.10 g, 17%). The product from the second band was identified as known [π -C_sH_sFe(CO)₂]₂ (0.03 g, 10%). The product from the third band was identified as the unreacted starting material (0.04 g).

Attempts at Replacement of CO in Dicarbonyl- π -cyclopentadienyl-(1-N-cyclohexylimino-2-phenylethyl)iron with Bases. Solutions of π -C₅H₅Fe(CO)₂[C(CH₂Ph)=NC₆H₁₁] and PPh₃ or C₆H₁₁NC in benzene or THF were refluxed for 8 hr. Evaporation of the solvent revealed (ir spectroscopy) no detectable amount of the decarbonylated product in the residue of each reaction mixture and led to recovery of starting material.

Attempted Decarbonylation of Carbonyl(isocyanide)- π -cyclopentadienylphenylacetyliron. When solutions of π -C₅H₅Fe(CO)(CNC₆H₁₁)-COCH₂Ph (*ca.* 0.5 g) in 50 ml of benzene or THF were heated at reflux for 6-10 hr, *ca.* 80-90% starting material was recovered.

Attempted Carbonylation of Dicarbonyl π -cyclopentadienylbenzyliron. A mixture of π -C₅H₅Fe(CO)₂CH₂Ph (ca. 0.3 g) and 40

(12) J. P. Bibler and A. Wojcicki, J. Amer. Chem. Soc., 88, 4862 (1966).

(13) The compound is prepared by the photochemical decarbonylation of the corresponding aroyl complex. Studies on this complex and the related reactions will be described in a successive paper. kg/cm^2 of CO in benzene was kept for 105 hr at 25°. Evaporation of the solvent resulted in recovery of starting material.

Results and Discussion

Reactions of Carbonyl(isocyanide)- π -cyclopentadienyliron Halides with Grignard Reagents. Treatment of π -C₅H₅Fe-(CO)(CNC₆H₁₁)I with a large excess of benzylmagnesium chloride in a benzene-ether mixture gives a yellow-orange solution. The work-up of the solution affords a yellow oil, identified as π -C₅H₅Fe(CO)(CNC₆H₁₁)CH₂Ph. The analogous benzyl derivatives are also prepared in a similar manner (eq 1; R = Ph, C₆H₄Cl-p; R' = C₆H₁₁, (CH₃)₃C, PhCH₂; X = Cl, I).

$$\pi - C_{s}H_{s}Fe(CO)(CNR')X + RCH_{2}MgCl \rightarrow \pi - C_{s}H_{s}Fe(CO)(CNR')CH_{2}R + MgClX$$
(1)

In contrast, the reactions of π -C₅H₅Fe(CO)(CNR')X with methyl-, ethyl-, isopropyl-, or phenylmagnesium halide under comparable conditions result in decomposition without giving the desired alkyl or aryl derivatives. We believe that the alkyl or aryl products as well as the benzyl derivatives, if formed, should have sufficient stability for detection and isolation under these conditions. In fact, some of these compounds are obtained through decarbonylation of the corresponding acyl or aroyl complexes.^{13,14}

Reactions of nucleophilic reagent such as Grignard reagent or alkyllithium with zerovalent metal carbonyls have been reported.¹⁵⁻¹⁷ They furnished an attack of the carbanion on the carbon atom of coordinated CO group. Piper and Wilkinson have reported that treatment of Grignard reagent with π -C₅H₅M(CO)_nX (M = Fe, n = 2; M = Mo or W, n = 3; X = Cl, Br, or I) leads to considerable decomposition with formation of tars.¹⁸ They suggested that the reactions leading to decomposition proceeded *via* an attack of Grignard reagent on the coordinated CO group. We could expect the similar pathway in our reaction. Thus in the reactions

⁽¹⁴⁾ For example, π -C₅H₅Fe(CO)[CNC(CH₃)₃]CH₃ is obtained from the photoassisted decarbonylation of the corresponding acetyl compound.

⁽¹⁵⁾ M. Y. Darensbourg, H. L. Conder, D. J. Darensbourg, and C. Hasday, J. Amer. Chem. Soc., 95, 5919 (1973).

⁽¹⁶⁾ E. O. Fischer and A. Maasbol, Angew. Chem., Int. Ed. Engl., 3, 580 (1964).

⁽¹⁷⁾ G. R. Dobson and J. R. Paxson, J. Amer. Chem. Soc., 95, 5925 (1973).

⁽¹⁸⁾ T. S. Piper and G. Wilkinson, J. Inorg. Nucl. Chem., 3, 104 (1956).

Scheme I. Proposed Mechanism for the Reaction of π -C_sH_sFe(CO)(CNR')X' with RMgX^a

^a The terminal isocyanide group and the cyclopentadienyl ligand are omitted for clarity.

with Grignard reagent, an initial attack would occur preferably on the carbon monoxide group rather than on the iron atom and lead to the formation of coordinatively unsaturated species, which will result in decomposition.

In the attempts to examine this hypothesis, the reactions of π -C₅H₅Fe(CO)(CNR')I (R' = C₆H₁₁, (CH₃)₃C) with RMgX (R = CH₃, *i*-C₃H₇, Ph, C₆H₄Cl-*p*) were run in the presence of carbon monoxide. They give the corresponding acyl or aroyl complex in fairly good yield (eq 2).

$$\pi - C_s H_s Fe(CO)(CNR')I + RMgX + CO \rightarrow$$

$$\pi - C_s H_s Fe(CO)(CNR')COR + MgIX$$
(2)

The analogous reaction with benzyl or *p*-chlorobenzylmagnesium chloride gives both benzyl and phenylacetyl derivatives (eq 3).

$$2\pi - C_{s}H_{s}Fe(CO)(CNR')I + 2RCH_{2}MgX + CO \rightarrow \pi - C_{s}H_{s}Fe(CO)(CNR')CH_{2}R + \pi - C_{s}H_{s}Fe(CO)(CNR')COCH_{2}R + 2MgIX$$
(3)

It is substantiated by the following points that two compounds obtained by the eq 3 are the direct products. First, the yields of the benzyl compound are relatively constant in the presence and absence of carbon monoxide, and the relative yields of both compounds are scarcely dependent on the length of time when the reactions were run for a long time (Table VI). Second, decarbonylation of the phenylacetyl complex to the benzyl one is not observed even in THF at reflux. Treatment of π -C₅H₅Fe(CO)(CNC₆H₁₁)CH₂Ph with carbon monoxide in the presence and absence of PhCH₂MgCl (at 25° and for 4 hr) leads also to recovery of the unreacted material. These results indicate that there has occurred no interconversion between the benzyl and phenylacetyl complexes under the reaction conditions in question. Similar behavior has been observed in the reaction of the cationic $[\pi$ -C₅H₅Fe(CO)₃]PF₆ with C₆F₅Li to give both π -C₅H₅Fe- $(CO)_2COC_6F_5$ and π -C₅H₅Fe $(CO)_2C_6F_5$.¹⁹

The mechanism of the reactions leading to formation of the acyl complex may be explained in terms of the action of 1 mol of the Grignard reagent on a complex comprised of 1 mol of the Grignard reagent and the isocyanide complex, by analogy to the postulated mechanism²⁰ for the reaction of ketone with Grignard reagent (Scheme I). The reaction proceeds with elimination of MgXX' and coordination of free carbon monoxide, or displacement of X' with CO in the intermediate I, thus converting it to the final complex. No attempts to examine different reactivity between benzyl and other Grignard reagent were made at present.

It is not surprising that an attack of RMgX on the CO ligand occurs more favorably than that on the isocyanide ligand. It may be interpreted by ease of an initial electrophilic attack

(19) P. M. Treichel and R. L. Shubkin, Inorg. Chem., 6, 1328 (1967).

(20) C. G. Swain and H. B. Boyles, J. Amer. Chem. Soc., 73, 870 (1951).

Table VI. Effect of Reaction Time on Yields of π -C₅H₅Fe(CO)(CNC₆H₁₁)CH₂Ph and π -C₅H₅Fe(CO)(CNC₆H₁₁)COCH₂Ph in Reactions of π -C₅H₅Fe(CO)(CNC₆H₁₁)I with PhCH₂MgCl^a

		%				
No.	Time, hr	Benzyl complex	Phenyl- acetyl complex			
1,6	2	50				
26	4	52				
3 <i>°</i>	2	51	33			
4^c	3	50	35			

^{*a*} Solvent benzene (20 ml)-ether (10 ml); reaction temperature 0-10°; iodide complex:PhCH₂MgCl \approx 1:5. ^{*b*} Reaction in the absence of CO. ^{*c*} Reaction in the presence of CO.

of MgX^{4} on the oxygen molecule of the terminal carbonyl group compared with that on the nitrogen molecule of the coordinated isocyanide²¹ and by the less steric requirement of carbon monoxide relative to isocyanide.

In the proton nmr spectra of π -C₅H₅Fe(CO)(CNR')R and π -C₅H₅Fe(CO)(CNR')COR the chemical shifts of the cyclopentadienyl ring protons occur at higher field than those of the corresponding signals for the parent alkyl or aroyl complexes. This is the effect expected by substitution of the more weakly π -accepting isocyanide ligand for the CO ligand. The nmr spectra of π -C₅H₅Fe(CO)(PPh₃)CH₂Ph²² and π -C₅-H₅Fe(CO)(PPh₃)COCH₂Ph²³ have been known to display the AB type quartet for the methylene protons, arising from the presence of an asymmetric moiety in the compounds in question. The methylene protons of benzyl and phenylacetyl derivatives of isocyanide show a sharp or a relatively sharp singlet. This nmr behavior can be explained by (1) a rapid exchange process or more likely (2) an accidental degeneracy of the two benzylic methylene proton resonances. The two methyl proton resonances show magnetic nonequivalence in the nmr spectra of π -C₅H₅Fe(CO)(CNC₆H₁₁)COCH(CH₃)₂ and π -C₅H₅Fe(CO)[CNC(CH₃)₃]COCH(CH₃)₂.

Reactions of Carbonyl(isocyanide)- π -cyclopentadienylalkyliron Complexes with Carbon Monoxide. Direct carbonylation and isocyanide insertion of noncarbonyl-alkylmetal complexes have been shown for M(L)₂(X)R, where M = Pd or Pt, L = tertiary phosphine, X = halogen, and R = alkyl or aryl.²⁴⁻²⁶

It is of particular interest in comparison with the direct insertion to study whether carbon monoxide or isocyanide

(21) I. Ugi, "Isonitrile Chemistry," Academic Press, New York, N. Y., 1971, p 222.

- (22) J. W. Faller and A. S. Anderson, J. Amer. Chem. Soc., 91, 1550 (1969).
- (23) H. Brunner, H.-D. Schindler, E. Schmidt, and M. Vogel, J. Organometal. Chem., 24, 515 (1970).
- (24) (a) P. M. Treichel, K. P. Wagner, and R. W. Hess, *Inorg. Chem.*, 12, 1471 (1973); (b) Y. Yamamoto and H. Yamazaki, *Bull. Chem. Soc. Jap.*, 44, 1873 (1971).

(25) G. Booth and J. Chatt, J. Chem. Soc. A, 634 (1966).

(26) Y. Yamamoto and H. Yamazaki, Inorg. Chem., 13, 438 (1974).

inserts favorably into the metal-carbon σ bond in the transition metal complexes coordinated by both ligands. Carbonyl-(isocyanide)- π -cyclopentadienylalkyliron, π -C₅H₅Fe(CO)-(CNR')R, is the best candidate to investigate this subject. Reaction of π -C₅H₅Fe(CO)(CNR')R with CO is expected to give either π -C₅H₅Fe(CO)₂ [C(R)=NR'] or π -C₅H₅Fe(CO)-(CNR')COR.

The reaction of π -C₅H₅Fe(CO)(CNC₆H₁₁)CH₂Ph with 20-30 kg/cm² of carbon monoxide was run in benzene, THF, or CH₃CN. The solution was chromatographed on alumina and the work-up of the yellow eluate gives a 1:1 adduct identified as π -C₅H₅Fe(CO)₂[C(CH₂Ph)=NC₆H₁₁]. No formation of the acyl complexes is observed. The infrared spectrum of the iminoacyl complex shows two terminal carbonyl absorptions at 1998 and 1941 cm⁻¹. In addition to these, the spectrum shows a strong peak at 1609 cm^{-1} , attributable to the carbon-nitrogen double bond. The proton nmr spectrum exhibits two sharp singlets at τ 5.51 and 6.00 assignable to the C₅H₅ and benzylic methylene protons and three broad signals due to the phenyl proton (ca. τ 2.5), α proton of the cyclohexyl group (ca. τ 6.85), and other cyclohexyl protons (ca. τ 8.4), respectively. Similar iminoacyl complexes, π -C₅H₅Fe(CO)₂[C(R)=NR'] (R = p-ClC₆H₄, p-ClC₆H₄CH₂; R' = C₆H₁₁, PhCH₂), are prepared from the reaction of π -C₅H₅Fe(CO)(CHR')R with CO. The related complex π -C₅H₅Fe(CO)₂[C(C₆F₅)=NCH₃] has been obtained by the reaction of $[\pi$ -C₅H₅Fe(CO)(CNCH₃)₂]PF₆ with $C_6F_5Li^{27}$ π - $C_5H_5Fe(CO)[CNC(CH_3)_3]CH_2Ph$ having a bulky isocyanide ligand does not undergo an isocyanide insertion, presumably because of steric influence.

Treichel, et al., have reported that decarbonylation of π - $C_5H_5Fe(CO)(CNCH_3)[C(C_6F_5)=NCH_3]$ takes place under thermal conditions to afford π -C₅H₅Fe(CNCH₃)₂C₆F₅.²⁷ On the contrary, no thermal decarbonylation of π -C₅H₅Fe- $(CO)_2[C(CH_2Ph)=NC_6H_{11}]$ is observed. When this compound is irradiated with a mercury lamp, extraction of CO occurs to give π -C₅H₅Fe(CO)(CNC₆H₁₁)CH₂Ph (eq 4).

$$\pi\text{-}C_{s}H_{s}Fe(CO)_{2}[C(CH_{2}Ph)=NC_{6}H_{11}] \xrightarrow{h\nu, -CO} CO$$

$$\pi\text{-}C_{s}H_{s}Fe(CO)(CNC_{6}H_{11})CH_{2}Ph \qquad (4)$$

Thus, this reaction is reversible. All attempts at replacement of CO in this complex with PPh₃ and $C_6H_{11}NC$ in benzene at reflux prove unsuccessful, although π -C₅-H₅Fe(CO)₂-COR undergoes displacement of CO to produce π -C₅H₅Fe-(CO)(L)COR, when allowed to react with PPh_3 and $R'NC^{28}$ on heating. The alkynylmetal complex π -C₅H₅Fe(CO)(C- NC_6H_{11})C=CPh does not lead to an insertion reaction, probably due to greater strength of the metal-alkynyl bond.

Treatment of π -C₅H₅Fe(CO)₂CH₂Ph with carbon monoxide under comparable conditions fails to give the carbonylation product. Insertion reaction of CO into π -C₅H₅Fe-(CO)₂CH₃ has ultimately been provided under 2000 psi of CO at 125°.29 In contrast to this, the aforementioned migration of the alkyl group on the isocyanide ligand in π -C₅- $H_5Fe(CO)(CNR')R$ occurs under relatively milder conditions. Furthermore, the migration on the isocyanide ligand proceeds preferentially rather than on the carbon monoxide ligand.

The effect of length of reaction times on the yields of the

lable VII.	Effect of Reaction Time on Yields of Iminoacyl
Complexes:	π -C _s H _s Fe(CO) ₂ [C(R)=NR'] ^a

Compd					
R	R'	Time, hr	Solvent	Yield, %	
p-ClC ₆ H ₄ CH ₂	C ₆ H ₁₁	24	C ₆ H ₆	10	
p-CIC ₆ H ₄ CH ₂	C ₆ H ₁₁	24	THF	15	
p-ClC ₆ H ₄ CH ₂	C ₆ H ₁₁	9 0	C ₆ H ₆	42	
p-ClC ₆ H ₄ CH ₂	$C_6 H_{11}$	140	C ₆ H ₆	63	
p-CIC ₆ H ₄ CH ₂	PhCH ₂	100	C ₆ H ₆	67	
PhCH,	C ₆ H ₁₁	100	C ₆ H ₆	38	
PhCH ₂	C ₆ H ₁₁	150	C ₆ H ₆	59	
PhCH ₂	$C_{6}H_{11}$	144	THF	77	
PhCH ₂	C ₆ H ₁₁	140	CH ₃ CN	83	
$p-ClC_6H_4$	C ₆ H ₁₁	100	C₄H₄	27	

^a CO pressure ca. 30 kg/cm²; 15 ml of solvent; reaction temperature 25°; ca. 1-1.5 mmol of complex.

product was investigated. It would appear that the relative rate of isocyanide insertion in the complexes in question decreases in the orders $PhCH_2NC > C_6H_{11}NC >> (CH_3)_3$ -CNC for the isocyanide and p-ClC₆H₄CH₂ > PhCH₂ > p- ClC_6H_4 for the alkyl group, respectively (Table VII). The result relating to the isocyanide group seems in general accord with the postulate that the reaction rate is enhanced by an electron-withdrawing ligand.³⁰ Such an effect is noted in the isocyanide insertion of the alkylplatinum complex.^{24a} The effect associated with the alkyl group is in contrast to that observed in the carbonylation of RMn(CO), with CO.³¹ The reaction also depends on solvents employed and increases with the dielectric constant of solvent; the order is CH₃- $CN > THF > C_6H_6$. Analogous trends have been observed in carbonylation of π -C₅H₅Fe(CO)₂R with phosphorus ligands³⁰ and sulfonylation with SO₂.³²

Mass Spectra of Isocyanide Complexes and Iminoacyl Complexes. There are many studies on the mass spectra of the metal-alkyl complexes³³⁻³⁵ but few examples of the metal complexes containing isocyanide ligands. We investigated the fragmentation schemes of the alkyl isocyanide complexes and the iminoacyl ones. Some of the degradation processes are supported by the observation of the metastable ions.

(a) π -C₅H₅Fe(CO)(CNR')R and π -C₅H₅Fe(CO)(CNR')-**COR.** The mass spectra of the acetyl and methyl derivatives are so similar that they appear to be those of the same compound except the parent ion of the acetyl compound. The parent ion (m/e 275, relative intensity (ri) 21) in the spectrum of π -C₅H₅Fe(CO)[CNC(CH₃)₃]COCH₃ undergoes stepwise losses of carbonyl groups, giving the carbonyl-free ion C_5H_5Fe [CNC(CH₃)₃]CH₃⁺ (m/e 219, ri 43). The losses of $CH_2 = C(CH_3)_2$ and the methyl group occur then to form $C_5H_5Fe(CNH)^+$ (m/e 148, ri 100). The structure with a hydrogen isocyanide ligand for the ion $C_5H_5Fe(CNH)^+$ is suggested by the loss of HNC to give the $C_5H_5Fe^+$ (m/e 121, ri 84) ion, followed finally by loss of C₅H₅ to furnish the iron ion. This process is supported by the observation of

Chem., 296 (1962). (32) (a) S. E. Jacobson and A. Wojcicki, J. Amer. Chem. Soc., (32) (b) S. E. Jacobson and A. Wojcicki, J. Amer. Chem. Soc., 93, 2535 (1971); (b) A. Wojcicki, Accounts Chem. Res., 4, 344

(1971); (c) A. Wojcicki, Advan. Organometal. Chem., 12, 31 (1974). (33) M. I. Bruce, Advan. Organometal. Chem., 6, 274 (1968). (34) M. Cais and M. L. Lupin, Advan. Organometal. Chem., 8, 211 (1970)

(35) J. Muller, Angew. Chem., Int. Ed. Engl., 11, 653 (1972).

⁽²⁷⁾ P. M. Treichel and J. P. Stenson, Inorg. Chem., 8, 2563 (1969).

⁽²⁸⁾ Y. Yamamoto and H. Yamazaki, unpublished results. (29) T. H. Coffield, J Kozikowski, and R. J. Closson, Chem. Soc., Spec. Publ., No. 13, 126 (1959).

^{(30) (}a) J. B. Bibler and A. Wojcicki, *Inorg. Chem.*, 5, 889 (1966); (b) M. L. H. Green and C. R. Hurley, *J. Organometal. Chem.*, 10, 188 (b) M. L. H. Green and C. K. Hulley, J. Organometal. Chem., 10, 1981
 (1967); (c) M. Green and D. J. Westlake, J. Chem. Soc. A, 367 (1971);
 (d) I. Douck and G. Wilkinson, *ibid.*, 2604 (1967); (e) A. Wojcicki,
 Advan. Organometal. Chem., 11, 87 (1973).
 (31) F. Calderazzo and F. A. Cotton, Proc. Int. Conf. Coord.

a metastable ion at m/e 98.5 $(121^2/148 = 98.9)$. The presence of the ion bearing a hydrogen isocyanide ligand has been noted in the spectra of $C_5H_5Mn(CO)_2(CNC_6H_{11})^{36}$ and $C_5H_5Fe(CO)(NCCF_3)[C(CF_3)=NH]$.³⁷ π - $C_5H_5Fe(CO)$ -[CNC(CH₃)₃]COCH₂Ph breaks down *via* two different pathways. In the first pathway the loss of a benzyl group occurs to afford $C_5H_5Fe(CO)_2[CNC(CH_3)_3]^+$ (m/e 260, ri 42). This ion loses two carbonyls and $CH_2=C(CH_3)_2$ stepwise to $C_5H_5Fe(CHN)^+$ (m/e 148, ri 37). The second pathway is of particular interest. A salient feature of this process involves the simultaneous loss of two carbonyl groups, although losses of two carbonyl groups occur stepwise in the mass spectra of the other acyl isocyanide complexes, π - C_5 - $H_5Fe(CO)(CNR')COR$, prepared here.

Thus the loss of 2 CO from the parent ion occurs, affording $C_5H_5Fe[CNC(CH_3)_3]CH_2Ph$ (*m/e* 295, ri 7). This transition is confirmed by the observation of a metastable ion at *m/e* 247.5 (295²/351 = 247.9) and the high-resolution mass spectrum of this complex.³⁸ Some examples of the simultaneous loss of carbonyl groups have been noted in the mass spectra of several arenemetal complexes.^{33,34} The successive losses of the CH₂=C(CH₃)₂ and HNC groups occur from the ion (*m/e* 295), finally giving the iron ion.

(b) π -C₅H₅Fe(CO)₂[C(R)=NR']. Many examples of decarbonylation of metal carbonyl derivatives, resulting in the absence of the parent peak in the mass spectrometer have been noted.³⁹⁻⁴¹ An example among such compounds is

(36) J. Muller and M. Herberhold, J. Organometal. Chem., 13, 399 (1968).

(37) R. B. King and K. H. Pannell, J. Amer. Chem. Soc., 90, 3984 (1968).

(38) The metastable ion at m/e 247.5 corresponds to the 2 CO or the CH₂=C(CH₃)₂ fragment. The exact mass of m/e 295 was counted as m/e 295.098, identical with that of the ion C₅H₅Fe[CNC(CH₃)₃]-CH₂Ph⁺ (m/e 295.102). For comparison the exact mass of the ion C₅H₅Fe(CO)₂(CNH)CH₂Ph⁺ is m/e 295.030.

(40) R. B. King, J. Amer. Chem. Soc., 85, 1584 (1963).

observed in the mass spectra of the iminoacyl complexes.

In the spectrum of π -C₅H₅Fe(CO)₂ [C(CH₂Ph)=NC₆H₁₁], the loss of CO from the highest ion C₅H₅Fe(CO) [C(CH₂-Ph)=NC₆H₁₁]⁺ (*m/e* 349, ri 22) occurs to give C₅H₅Fe [C-(CH₂Ph)=NC₆H₁₁]⁺ (*m/e* 321, ri 75). This ion appears to break down *via* two pathways. In the first the successive losses of C₆H₁₁ and CN occur to form C₅H₅FeCH₂Ph⁺ (*m/e* 212, ri 100). This loses the PhCH₂ and C₅H₅ groups to give Fe⁺. In the second the loss of PhCH₂ occurs, affording C₅H₅Fe-(CNC₆H₁₁)⁺ (*m/e* 230, ri 66). The mass spectrum of π -C₅H₅Fe(CO)₂[C(CH₂C₆H₄Cl-*p*)=NC₆H₁₁] gives a fragmentation pattern similar to that of the benzyl derivative.

In the spectrum of π -C₅H₅Fe(CO)₂ [C(C₆H₄Cl-*p*)=NC₆-H₁₁] the second path leading to formation of the ion C₅H₅-Fe(CNC₆H₁₁)⁺ from C₅H₅Fe[C(C₆H₄Cl-*p*)=NC₆H₁₁]⁺ (*m/e* 341, ri 35) is not detectable. The successive losses of CO, C₆H₁₁, and CN from the highest ion C₅H₅Fe(CO) [C(C₆H₄-Cl-*p*)=NC₆H₁₁]⁺ (*m/e* 369, ri 58) occur to form C₅H₅FeC₆-H₄Cl-*p*⁺ (*m/e* 232, ri 19).

Registry No. $[\pi - C_{S}H_{S}Fe(CO) \{CNC(CH_{3})_{3}\}]_{2}, 51567-87.4; \pi - C_{S}H_{S}Fe(CO)(CNC_{6}H_{11})I, 36644-63-0; \pi - C_{S}H_{S}Fe(CO)[CNC(CH_{3})_{3}]I, 51567-85-2; \pi - C_{S}H_{S}Fe(CO)(CNC_{6}H_{11})CH_{2}Ph, 51567-70-5; \pi - C_{S}H_{S} - Fe(CO)(CNC_{6}H_{11})CH_{2}C_{6}H_{4}Cl-p, 51567-76-1; \pi - C_{5}H_{S}Fe(CO)(CNC_{4}-1)CH_{2}C_{6}H_{4}Cl-p, 51567-76-1; \pi - C_{5}H_{S}Fe(CO)(CNC_{4}-1)CH_{2}C_{6}H_{4}Cl-p, 51567-76-1; \pi - C_{5}H_{5}Fe(CO)(CNC_{4}-1)CH_{2}C_{6}H_{4}Cl-p, 51567-76-1; \pi - C_{5}H_{5}Fe(CO)(CNC_{4}-2)Ph, 51567-72-7; \pi - C_{5}H_{5}Fe(CO)_{2}[C(CH_{2}Ph)=NC_{6}H_{11}], 51567-81-8; \pi - C_{5}H_{5}Fe(CO)_{2}[C(C_{6}H_{4}Cl-p)=NC_{6}H_{11}], 51567-81-7; \pi - C_{5}H_{5}Fe-(CO)(CNC_{6}H_{11})CI, 51567-74-9; \pi - C_{5}H_{5}Fe(CO)(CNCH_{2}Ph)H, 51567-84-1; \pi - C_{5}H_{5}Fe(CO)(CNC_{6}H_{11})COCH_{2}Ph, 51567-73-8; \pi - C_{5}H_{5}Fe-(CO)[CNC(CH_{3})_{3}]COPh, 51567-71-6; \pi - C_{5}H_{5}Fe(CO)(CNC_{6}H_{11})CO-C_{6}H_{4}Cl-p, 51567-75-0; \pi - C_{5}H_{5}Fe(CO)(CNC_{6}H_{11})COC_{3}H_{7}-i, 51567-78-3; \pi - C_{5}H_{5}Fe(CO)[CNC(CH_{3})_{3}]COC_{3}H_{7}-i, 51567-79-4; \pi - C_{5}H_{5}Fe(CO)_{2}[C(CH_{2}C_{6}H_{4}Cl-p)=NC_{6}H_{11}], 51567-83-0; \pi - C_{5}H_{5}Fe(CO)_{2}[C(CH_{2}C_{6}H_{4}Cl-p)=NC_{2}Ph], 51567-82-9; [\pi - C_{3}H_{5}Fe(CO)_{2}]_{2}, 2154-95-9; \pi - C_{5}H_{5}Fe(CO)_{2}[R-C_{3}H_{5}Fe(CO)_{2}]_{2}, 12078-28-3; PhCH_{2}MgCl, 6921-34-2; CO, 630-08-0.$

(41) E. K. von Gustorf, M. C. Henry, and D. J. MeAdoo, Justus Liebigs Ann. Chem., 707, 190 (1967).

Contribution from the Departments of Chemistry, Northeastern University, Boston, Massachusetts 02115, and the University of Missouri–Rolla, Rolla, Missouri 65401

Nature of the Electronic Ground State in Tris(2-chlorophenanthroline)iron(II) Perchlorate and Related Complexes

W. M. REIFF* and GARY J. LONG

Received February 4, 1974

AIC40076I

The orbital and spin ground states of $[Fe(2-Cl(phen))_3](ClO_4)_2$ (phen = phenanthroline) and related high-spin ferrous complexes have been studied using Mossbauer spectroscopy. The temperature dependence of the Mossbauer spectrum of $[Fe(2-Cl(phen))_3](ClO_4)_2$ over the range 300-4.2°K indicates the system to have a ground *spin quintet* contrary to the results of a recent susceptibility study in which a high-spin to low-spin equilibrium is assumed. Magnetically perturbed Mossbauer spectra of the 2-Cl complex as well as the high-spin form of $[Fe(phen)_2(NCS)_2]$ show these compounds to have a *negative* principal component (V_{zz}) of the electric field gradient tensor. This result is consistent with previous Mossbauer and magnetic studies of $[Fe(phen)_2X_2]$ complexes ($X^- = Cl^-, N_3^-$) and is interpreted in terms of an electron in d_z^2 corresponding to an orbital (²A) singlet ground term.

The purpose of this work is the elucidation of both the orbital and spin ground states of certain high-spin ferrous (diimine) complexes which have been the subject of several recent studies.

 \ast To whom correspondence should be addressed at Northeastern University.

Spin Ground State

Extensive data¹ exist establishing that nearly all six-coordinate iron(II) complexes of the type $[Fe(phen)_3]^{2+}$ and $[Fe(bipy)_3]^{2+}$ have diamagnetic (¹A) ground states. This same

(1) R. L. Collins, R. Pettit, and W. A. Baker, Jr., J. Inorg. Nucl. Chem., 28 1001 (1966).

⁽³⁹⁾ R. B. King, J. Amer. Chem. Soc., 90, 1417 (1968).